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Abstract. This work addresses a challenging inventory routing problem that arises from
a practical application faced by air-product companies, including Air Liquide. Given
its computational complexity and industrial importance, this problem (denoted as IRP-
Challenge2016) was presented as the topic of the French Operational Research and
Decision Support Society/European Operational Research Society (ROADEF/EURO)
Challenge 2016. The IRP-Challenge2016 seeks an optimal delivery schedule to mini-
mize the unit distribution cost, while satisfying various hard constraints. It involves a
single product, a heterogeneous fleet, heterogeneous drivers, multiperiods, a determin-
istic consumption forecast, and time-window constraints. We present a new mathematical
formulation of the problem and introduce a matheuristic algorithm that integrates a local
search-based metaheuristic with mathematical programming. Our algorithm combines
mixed integer programming and linear programming as slave methods to optimize timing
and delivery and embeds these procedures within a multineighborhood search meta-
heuristic to adjust routes. The method extends and enhances a preliminary version of our
algorithm, which ranked third in the final round of the ROADEF/EURO Challenge 2016.
Computational results for 20 challenge benchmark instances demonstrate the value of
the proposed algorithm in terms of both effectiveness and efficiency with respect to the
results reported in the competition. We additionally analyze several key components of
our matheuristic to gain an insight into its operation.

History: This paper has been accepted for the Transportation Science Special Section on the ROADEF/
EURO Challenge 2016.

Funding: This work was supported by the National Natural Science Foundation of China [Grants
61370183 and 71850410545].

Supplemental Material: The e-companion is available at https://doi.org/10.1287/trsc.2019.0930.
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1. Introduction
Organized by the French Operational Research and
Decision Support Society (ROADEF) jointly with the
European Operational Research Society (EURO), the
ROADEF/EURO Challenge is an international opera-
tions research competition that features real-world
optimization problems and gives researchers an op-
portunity to compare their algorithms on real-life
challenging optimization problems. The topic of the
Challenge for 2016 focuses on an Inventory Rout-
ing Problem (IRP), which occurs in the healthcare
business of Air Liquide. In total, 41 teams from 16
countries registered for participation in the challenge,
out of which 12 were qualified as finalists. Although
the problem formulation was simplified for the
qualification phase, the complete problem with ex-
tended and enriched features was made available in
the final phase. Moreover, two sets of benchmark in-
stances were introduced in the final phase. The first

set was published with the problem specification
(public set B), whereas the other set was hidden to
the participants until the end of the challenge (hid-
den set X), with the aim to favor solvers that exhibited
robust performance on different data sets.
The development of information technologies has

brought about more comprehensive data and more
precise prediction in supply chain management.
Companies are now able to globally optimize their
supply chains to reduce logistics costs, while pro-
viding better service by using this information in
various ways. The Vendor Managed Inventory (VMI)
system is a noteworthy example, which allows ven-
dors to monitor their customer inventory levels and
directly arrange the replenishment schedules. Apart
from such services for VMI customers, there are also
call-in orders, where customers manage their stocks
themselves and decide the time windows of their
orders, as well as the product quantity to acquire.
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In this paper, we introduce a complete mathematical
formulation and propose a matheuristic algorithm for
IRP-Challenge2016. Our proposed algorithm produces
high-quality solutions to this complex real-world op-
timization problem in a very favorable time span
compared with previous efforts. Because of the fine-
grained time discretization, which makes it very diffi-
cult to simultaneously optimize routes, timing, and
delivery quantities, our algorithm applies a new de-
composition hierarchy, which, unlike other existing
schemes, divides the original problem into one master
problem and two subproblems. The matheuristic ad-
justs routes in the master problem and then optimizes
timing and decides delivery quantities in the two sub-
problems. For the master problem, our method adopts
a local search algorithm that is based on six neighbor-
hoods, such as adding/removing operations or shifts to
adjust routes. For the timing optimization subproblem,
we employ a mixed-integer-programming (MIP) model,
which we solve with the mathematical programming
solver Gurobi. By introducing a linear-programming
(LP) model, the matheuristic can properly deal with
continuous quantities. These features distinguish
our algorithm from previous metaheuristics, such as
Cousineau-Ouimet (2002), Guerrero et al. (2013), and
Qin et al. (2014).

The remainder of this paper is organized as follows.
In Section 2, we present the problem description of
IRP-Challenge2016, including problem constraints
and objective. The related works of the IRP are dis-
cussed in Section 3. Section 4 gives a complete math-
ematical formulation of the problem. The framework
and ingredients of our algorithm are described in
Section 5. Section 6 reports computational results and
analysis that helps understand the reason for the
performance reported with our method. Conclusions
are given in Section 7.

2. Problem Description
The IRP-Challenge2016 problem is defined on a
complete directed graph, G � (N,A), with a set of
nodesN � B ∪ S ∪ V ∪ C and a set of arcs A � {(n1,n2)|
∀n1,n2 ∈ N, n1 �� n2}. B is the set of bases that are both
the starting and the ending nodes of shifts. Specifically,
there is only one base in the competition. S is the set of
sources where a trailer can be loaded with products.
V ∪ C is the set of customers where a trailer stops and
delivers the product. Specifically, V is the set of VMI
customers, andC is the set of call-in customers. For any
two nodes n1 and n2, the travel distance (in kilometers)
and time (in minutes) from n1 to n2 are given.

In the IRP-Challenge2016, an operation is either a load
at a source or a delivery at a customer. Thus, sources and
customers are also called operation nodes. An operation
is carriedoutbya trailerdrivenbyadriver.A set of trailers
T and a set of drivers D are available for scheduling.

There are two types of discretization of the sched-
ule horizon in IRP-Challenge2016. Hourly timesteps
provide the inventory-management granularity of
VMI customers, whereas minute timesteps give the
time granularity for drivers, trailers, and operations.
A solution to IRP-Challenge2016 is a set of shifts. Each
shift is a chronological list of operations performed by
a driver–trailer pair. A shift starts at a base, performs
the scheduled operations one by one, and ends up
returning to the base. Therefore, for each shift of a so-
lution, we need to decide on its driver, trailer, start time
(in minutes), and list of operations. In turn, for each
operation in the list,weneed todecideon thenodewhere
the operation takes place, the arrival time (in minutes)
that represents the start time of the operation, and the
quantity to be delivered or loaded in the operation.
The constraints that must be respected in the IRP-

Challenge2016 are usually categorized in the fol-
lowing six groups:
1. Constraints related to layovers:

•C1.1 Layover amount restriction. Some customers,
called layover customers, are in distant areas far from
bases, which require long travel time for delivery. To
enable a driver to travel for an extended duration, a
fixed rest time in a shift called a layover (inminutes) is
required. More precisely, a layover takes place if and
only if the travel between two consecutive nodes in a
shift lasts more than the layover time of the driver
plus the travel time. A shift can include at most one
layover at anywhere on its route if it involves one or
more deliveries to layover customers.
2. Constraints related to drivers:

• C2.1 Minimum intershifts duration. Two consec-
utive shifts assigned to the same driver must be sepa-
rated by a minimum rest duration (in minutes). Spe-
cifically, upon completing a shift, a driver can begin the
next shift only after a minimum rest time has elapsed.

• C2.2 Maximum driving time. The cumulative
(i.e., total) driving time of a driver in a shift cannot be
longer than the driver’s maximum allotted driving
time. If there is a layover in the shift, the cumulative
driving time is split into two parts by the layover, a
before-layover part and an after-layover part. Each
part cannot be longer than the maximum driving
time. Note that a layover occurs once the cumulative
driving time reaches themaximumdriving time limit,
even if the trailer does not happen to be at a node.

•C2.3 Time windows of drivers. For each driver, a set
of availability intervals (time windows) is given, which
limits the driver’s working time. A timewindow in the
IRP-Challenge2016 is indicated by its starting timeand
ending time (in minutes). The interval for each shift
must lie in one of its driver’s time windows.
3. Constraints related to trailers:

• C3.1 Usage conflict of trailers. For any two shifts s1
and s2 using the same trailer, either s1 ends before the
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start of s2 or s2 ends before the start of s1. In other
words, different shifts of the same trailer cannot
overlap in time.

• C3.2 Trailer–driver compatibility. There is a com-
patibility relation between trailers and drivers—that
is, every driver can only drive a subset of trailers. For
each shift, the assigned trailer must be one of the
trailers that can be driven by the driver.

• C3.3 Capacity of trailers. For each trailer, the
capacity and the amount of product (in kilograms) at
the beginning of the horizon are given. The initial
quantity in a trailer for a shift is the end quantity of its
previous shift. The product quantity in each trailer
cannot be negative or exceed the trailer’s capacity.

4. Constraints related to shifts:
• C4.1 Fixed operation time. A fixed loading and a

fixed delivery time (in minutes) take place at a source
and at a customer, respectively. Consequently, the
departure time for a node is equal to the arrival time
plus the operation time. The operation time only de-
pends on the node where the operation occurs and
has no relation to the operation quantity.

• C4.2 Internodes duration in a shift. For any two
consecutive nodes n1 and n2 in a shift, the interval
between the arrival time of n2 and the departure time
of n1 must be equal to or greater than the travel time
from n1 to n2 plus the layover time (if there is a layover
between these two nodes). Beside the necessary travel
time andpossible layover time, a trailer canwait at the
gate of a source or a customer. That is, an arbitrarily
long idle time can precede an operation if all the
constraints are satisfied.

• C4.3 Node–trailer compatibility. There is a com-
patibility relation between operation nodes (sources
and customers) and trailers, where every operation
node can only be served by a subset of trailers. For each
shift, the assigned trailer must be compatible with
every operation node.

• C4.4 Time windows of customers. For each cus-
tomer, a set of opening time windows is given. Deliv-
ery must be performed within one of the customer’s
opening time windows.

•C4.5 Operation quantity restriction. The operation
quantity cannot be zero. When a trailer arrives at a
customer, some amount of product must be deliv-
ered. Likewise, when a trailer arrives at a source, a
certain amount of product must be loaded.

• C4.6 Delivery quantity restriction. For each VMI
customer, the minimum amount of product (in kilo-
grams) that should be delivered in a single operation
is given. The operation quantity of any delivery to a
VMI customer cannot be less than theminimum amount
or greater than the capacity of the customer’s tank.

5. Constraints related to VMI customers:
• C5.1 Capacity of VMI customers. The hourly fore-

casted consumption amount of product (in kilograms)

for every VMI customer during the schedule horizon is
known. The amount of product in the customer’s tank
at the beginning of the horizon and the capacity of the
tank are also given. A solution to the problem must
guarantee that the product quantity in each VMI
customer’s tank in every hour throughout the horizon
cannot be negative or greater than its capacity. The
tank quantity in each hour equals the tank quantity in
the previous hour plus the quantity of product de-
livered by various trailers in the current hour,minus the
amount consumed in the current hour.

• C5.2 Run-out avoidance. A safety inventory level
is given for each VMI customer. The quantity in the
customer’s tank should not be less than the safety
level at each hour of the schedule horizon.
6. Constraints related to call-in customers:

• C6.1 Call-in orders satisfaction. For each call-in
customer, a set of orders is given. An order consists
of an ordered quantity of product (in kilograms), a
minimum ratio ([0%, 100%]) of the ordered quantity
to be delivered, and a time window for delivery. The
timewindows for different orders of a given customer
never overlap in time. Orders of each call-in customer
must be satisfied by one or more deliveries. The cumu-
lative delivery quantity has to be above a certain thresh-
old and should not exceed the ordered quantity.

• C6.2 Call-in order delivery time restriction. Each
delivery to a call-in customer should be related to one
of its orders, which means that the start time of the
delivery should be within the time window corre-
sponding to an order of the given customer.
A solution of the IRP-Challenge2016 problem is

feasible if it satisfies all the above constraints. Given a
feasible solution, the objective is the logistic ratio,
defined as the total cost of the shifts divided by the
total quantity delivered in the shifts. An optimal
solution of the IRP-Challenge2016 problem is a fea-
sible solution with the minimum objective value. The
cost of a shift consists of the corresponding distri-
bution costs, including distance cost, time cost, and
layover cost. The distance cost for a shift is the prod-
uct of the cost per distance of the assigned trailer
and the total distance of the shift. The time cost for a
shift is the product of the cost per working time of
the assigned driver and the total working time. The
layover cost of a shift is equal to the layover cost of
the assigneddriver if there is a layover in the shift, and
is zero otherwise. For the complete definition of the
problem, please refer to the official website of the
ROADEF/EURO Challenge at http://www.roadef
.org/challenge/2016/en/sujet.php.

3. Related Works
Combining the inventory-management problem and
the vehicle-routing problem, the IRP-Challenge2016
takes into account both the VMI and the call-in
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customers, which renders the resulting problem even
more challenging. As described in Coelho, Cordeau,
and Laporte (2013), numerous models for the IRP
have been proposed in the literature, considering
specific conditions or problem applications. The most
common criteria that distinguish between different
variants of the IRP are horizon length, demand pat-
tern, and fleet characteristics. With respect to hori-
zon length, Federgruen and Zipkin (1984) and Chien,
Balakrishnan, and Wong (1989) dealt with the single-
period version in the early years of the IRP research.
More recently, the multiperiod extension has been
widely studied in Kleywegt, Nori, and Savelsbergh
(2004); Moin, Salhi, and Aziz (2011); Coelho and
Laporte (2013a); and Adulyasak, Cordeau, and Jans
(2013). For the demand pattern, Coelho, Cordeau, and
Laporte (2014) introduced heuristics for both the
dynamic and the stochastic IRP, where customer de-
mands are gradually revealed over time. On the other
hand, most of the literature in the last decade and a
half has been focused on static, nonstochastic demand.
Various approaches for solving the deterministic IRP
can be found in Bertazzi, Paletta, and Speranza (2002);
Cousineau-Ouimet (2002);Campbell and Savelsbergh
(2004); Guerrero et al. (2013); Coelho and Laporte
(2013a); Mjirda et al. (2014); Cordeau et al. (2015);
and Desaulniers, Rakke, and Coelho (2016). Con-
cerning different fleet characteristics, there are mainly
two types of variants featuring homogeneous and
heterogeneous fleets, respectively. For homogeneous
fleet variants, Archetti et al. (2007) and Solyali and
Süral (2011) studied the single-vehicle IRP that can be
regarded as a special case of a homogeneous fleet
variant, whereas Coelho and Laporte (2013a) and
Guerrero et al. (2013) focused on the general homo-
geneous fleet variants. Meanwhile, many researchers
have studied the heterogeneous fleet versions, includ-
ing Abdelmaguid, Dessouky, and Ordóñez (2009);
Benoist et al. (2011); Coelho and Laporte (2013b); and
Hewitt et al. (2013).

Over the last decade and a half, both exact and
metaheuristic optimization approaches have been
proposed for tackling the IRP. Exact methods for the
IRP include branch-and-cut algorithms proposed in
Archetti et al. (2007); Coelho and Laporte (2013b);
Desaulniers, Rakke, and Coelho (2016); Van Anholt
et al. (2016); and Avella, Boccia, andWolsey (2018), as
well as dynamic programming introduced in Kleywegt,
Nori, and Savelsbergh (2004). Aside from exact al-
gorithms, metaheuristics including tabu search, vari-
able neighborhood search, and genetic algorithms
have been investigated in Cousineau-Ouimet (2002);
Liu and Lee (2011); Liu and Chen (2012); Mjirda et al.
(2014); and Park, Yoo, and Park (2016).

To exploit the combined power of different schemes,
many hybrid algorithms have also been developed.

One of the most popular hybrid approaches is the so-
called matheuristic, which incorporates mathemati-
cal programming models for solving subproblems
with heuristic ormetaheuristic search. There are three
main types of matheuristics for routing problems, as
classified in Archetti and Speranza (2014)—the de-
composition approaches, the improvement heuristics,
and the branch-and-price/column-generation-based
methods. In a decomposition approach, the original
problem is divided into subproblems, some of which
are solved with mathematical programming. In an im-
provement heuristic, a mathematical model can be used
to generate an initial solution, to complement a partial
solution, or to improve a complete solution by fixing
some part of it. A branch-and-price/column-generation-
based (B&P/CG) method might employ a heuristic
to solve the restricted master problem, to guide the
branching, to determine the bounds, or to improve the
feasibility of relaxed solutions obtained by B&P/CG.
Over the last decades, matheuristic algorithms

have beenwidely used to solve the IRP.Guerrero et al.
(2013) integrated mixed-integer programming with
local search to tackle the problem. In addition, other
techniques such as decomposition techniques have
been applied to complex models in order to reduce
the problem complexity. A common decomposition
scheme adopted by Bard et al. (1998), Campbell and
Savelsbergh (2004), and Cordeau et al. (2015) is to
decide on the approximate times and delivery quanti-
ties for each customer, prior to determining the ac-
tual routes. Although the partial solution produced in
the first phase can be of poor quality and mislead-
ing due to the nature of an optimal complete solution,
it nevertheless often brings good performance gains
by providing an advanced start for the second phase.
Matheuristics have also been frequently employed

for different problems presented in the ROADEF/
EURO Challenge. For example, Mansi et al. (2012)
used it to solve the disruption-management prob-
lem proposed by Amadeus in 2009. Anghinolfi et al.
(2012) employed it to solve the energy-management
problem proposed by EDF in 2010 and reported better
average results than the winning algorithm. Lopes
et al. (2015) used it to solve the machine-reassignment
problem proposed by Google in 2012.
Apart from the general algorithm frameworks,

various replenishment policies have been intro-
duced in the literature to simplify the problem model,
such as (a) Direct Shipping in Ramalhinho Dias
Lourenço and Ribeiro (2003); (b) Order Up-to Level
in Bertazzi, Paletta, and Speranza (2002), Ramalhinho
Dias Lourenço and Ribeiro (2003), Coelho, Cordeau,
and Laporte (2012b), and Archetti et al. (2012);
(c) Zero Inventory Ordering Policy in Ramalhinho
Dias Lourenço and Ribeiro (2003); (d) Fixed Partition
in Ramalhinho Dias Lourenço and Ribeiro (2003) and
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Zhao, Wang, and Lai (2007); and (e) Power-of-Two in
Zhao, Chen, and Zang (2008). These policies can
significantly reduce the solution space, at the cost
of overlooking some solutions.

To understand the complexity of the challenge, a
comprehensive comparison between different ver-
sions of the IRP models that are related to the chal-
lenge topic is given in Table 1. ColumnEntity presents
the corresponding entity involved in each feature,

including Driver, Trailer, Site, and Product. Column
Type categorizes the features from another perspec-
tive into objectives (denoted with O), time-related
constraints (T), space-related constraints (S), and
resource-related constraints (R). Column Feature lists
the key attributes to distinguish between differ-
ent versions of the IRP. Finally, the following five
columns give the representative IRP versions for
comparison. C16 reports the characteristics of the

Table 1. Comparison Between the IRP Versions That Are Related to IRP-Challenge2016

Entity Type Feature C16 BGJ CCL ABL/ABH DRC

O Routing cost * 3 3 3

O Delivery quantity *
O Logistic ratio 3 3

O Holding cost 3 3 3

Driver R Multiple drivers 3 3

RT Maximum driving time 3 3

RT Minimum intershifts duration 3 3

RT Layover 3 3

RT Multiple driver time windows 3 3

R Driver consistency 3

R Driver partial consistency 3

Trailer R Multiple trailers 3 3 3 3

R Floating driver–trailer pairs 3 3

RT Multiple shifts in a period per vehicle 3 3

R Vehicle capacity 3 3 3 3 3

R Heterogeneous fleet 3 3 3 3

RT Vehicle filling rate * 3

Site R Deterministic periodic demand 3 3 3 3 3

R Deterministic periodic production 3 3 3

T Nontrivial travel time within a period 3 3

ST Multiple visits to a customer in a period 3 3

T Multiple periods 3 3 3 3 3

S Single base 3 3 3 3 3

S Multiple suppliers 3 3

S Distinct base and supplier 3 3

S VMI customers 3 3 3 3 3

S Call-in customers 3 3

ST Multiple customer time windows 3 3

S Customer capacity 3 3 3 3 3

R Supplier capacity 3 3

ST Visit spacing * 3

Product R Single product 3 3 3 3 3

R Maximum-level policy 3 3 3 3 3

R Order-up-to policy * 3 3

R Quantity consistency * 3

Notes. Column Entity presents the corresponding entity involved in each feature, including Driver,
Trailer, Site, and Product. Column Type categorizes the features from another perspective into objectives
(O), time-related constraints (T), space-related constraints (S), and resource-related constraints (R).
Column Feature lists the key attributes to distinguish between different versions of the IRP. Finally, the
remaining five columns give the representative IRP versions for comparison. C16 reports the charac-
teristics of the IRP-Challenge2016. BGJ represents the problem solved by the randomized local search
proposed in Benoist et al. (2011). CCL stands for the variant solved by the adaptive large neighborhood
search proposed in Coelho, Cordeau, and Laporte (2012a). ABL and ABH are the versions solved by the
branch-and-cut and the hybrid approach for inventory routing proposed in Archetti et al. (2007, 2012).
DRC represents the IRP solved by the branch-price-and-cut method proposed in Desaulniers, Rakke,
and Coelho (2016). A 3 mark indicates that the solver is able to handle the feature, and a * mark in the
second column indicates that our algorithm can solve the IRP with the given feature after minor
modifications, without a significant deterioration in performance.
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IRP-Challenge2016. BGJ represents the problem
solved by the randomized local search proposed in
Benoist et al. (2011). CCL stands for the variant solved
by the adaptive large neighborhood search proposed
in Coelho, Cordeau, and Laporte (2012a). ABL and
ABH are the versions solved by the branch-and-cut
and the hybrid approach for inventory routing pro-
posed in Archetti et al. (2007, 2012). DRC represents
the IRP solved by the branch-price-and-cut method
proposed in Desaulniers, Rakke, and Coelho (2016).
A3mark indicates that the solver is able to handle the
feature, and a ∗ mark in the second column indicates
that our algorithm can solve the IRP with the given
feature after minor modifications, without a signifi-
cant deterioration in performance.

We can observe from Table 1 that the resolution
techniques tend to use local search-based metaheu-
ristics when more features are considered. On the
other hand, they rely more on exact methods like
mathematical programming or tree search, when less
features are required. Furthermore, it is very common
to use hybrid algorithms, especially matheuristics, to
solve problems that integrate both continuous and
discrete optimization. One of the key features that
distinguishes the IRP-Challenge2016 from the classic
IRP versions is that traveling takes nontrivial time,
where the number of nodes visited in a period is
limited, while there could be shifts that covermultiple
periods. Aside from the problem proposed in Benoist
et al. (2011), whichwas alsomotivated byAir Liquide,
none of the other versions support this feature. An-
other interesting point is that some features, such
as quantity consistency and visit spacing presented
in Coelho, Cordeau, and Laporte (2012a), are only
used as acceleration strategies in our algorithm, as

described later in Section 5.3.4. It is thus easy to ex-
tend our matheuristic to cover such characteristics.

4. Mathematical Formulation
To describe the mathematical formulation of the IRP-
Challenge2016, Tables 2 and 3, respectively, present
the notations of sets and constants. We define deci-
sion variables and auxiliary variables in Tables 4
and 5, respectively.
Because of the complexity of the IRP-Challenge2016

problem, we adopt several preprocessing rules to au-
tomatically satisfy some of the constraints and to prune
some unnecessary decision variables that will not af-
fect the optimality of the solution.
1. For constraint C2.1 (minimum intershifts duration),

the decision variable ydtnmm′ for a base that does not
satisfy m′ −m ≥ MI

d is removed (except for the cases
where m is the first minute of the horizon or m′ is the
last minute of the horizon).

Table 2. Sets in IRP-Challenge2016

Set Description

B Set of bases. Bases are both the starting and the
ending nodes of shifts.

S Set of sources where a trailer can be loaded with
product

V Set of VMI customers
C Set of call-in customers
N Set of all nodes, N � B ∪ S ∪ V ∪ C
N∗ Set of operation nodes, N∗ � S ∪ V ∪ C
D Set of drivers
T Set of trailers
R Set of orders from all the call-in customers
M Set of minutes over the schedule horizon,

M � {0, . . . , |M| − 1}
H Set of hours over the schedule horizon,

H � {0, . . . , |H| − 1}
WD

d Set of available time windows of driver d ∈ D
WN

v Set of opening time windows of customer v ∈ V ∪ C

Table 3. Constants in IRP-Challenge2016

Constant Description

MH Number of minutes in an hour, MH � 60
ED
nn′ Travel distance from node n to node n′

ET
nn′ Travel time from node n to node n′

ES
n Operation time at operation node n

Atn Atn � 1 if and only if trailer t and operation
node n are compatible; 0 otherwise

Adt Adt � 1 if and only if driver d can drive trailer t; 0
otherwise

MD
d Maximum driving time of driver d in a shift

ML
d Layover time of driver d

MI
d Minimum rest time of driver d between two

consecutive shifts
QC

t Capacity of trailer t
QB

t Product quantity in trailer t at the beginning of
the horizon

ICv Tank capacity of VMI customer v
IBv Product quantity in the tank of VMI customer v

at the beginning of the horizon
ISv Safety level of the inventory at VMI customer v
IMv Minimum amount of product that should be delivered

to VMI customer v in a single operation
Uvh Cumulative consumption of VMI customer v from the

first hour 0 to the hour h
AL

v AL
v � 1 if and only if customer v is a layover customer;
0 otherwise

WB
nw,W

E
nw First and last minute of time window w of customer n

WB
dw,W

E
dw First and last minute of time window w of driver d

RU
r Quantity of order r, which indicates the maximum

quantity to deliver for r
RL
r Minimum quantity to deliver for order r, which is equal

to the product of the ordered quantity and the
minimum ratio

RC
r Call-in customer of order r

RB
r ,R

E
r First and last minute of the time window corresponding

to order r
FWd Cost per working time unit of driver d
FLd Layover cost of driver d
FDt Cost per distance unit of trailer t
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2. For constraint C2.3 (time windows of drivers), deci-
sion variables xdtnmn′m′ , ydtnmm′ , zdtnmm′ , odtvm, and odtsm,
whose related times cannot fit in any time window of
driver d are removed.

3. For constraint C3.2 (trailer–driver compatibility),
decision variables xdtnmn′m′ , ydtnmm′ , zdtnmm′ , odtvm, and
odtsm whose driver d and trailer t are incompatible
are removed.

4. The operation time at one operation node is
fixed. Hence, for constraint C4.1 (fixed operation time),
the decision variable ydtnmm′ for an operation node that
does not satisfy m′ −m ≥ ES

n is removed.
5. The travel time between any two nodes is fixed.

Hence, for constraint C4.2 (internodes duration in a
shift), a decision variable xdtnmn′m′ that does not satisfy
m′ −m � ET

nn′ is removed. This rule also ensures that
layovers never occur at traveling edges to correctly
handle them in layover edge-related formulas.

6. For constraint C4.3 (node–trailer compatibility),
decision variables xdtnmn′m′ , ydtnmm′ , zdtnmm′ , odtvm, and
odtsm are removed if the corresponding trailer t and
operation node n (n′, v, or s) are incompatible.

7. For constraint C4.4 (time windows of customers),
decision variables xdtnmn′m′ , ydtnmm′ , and odtvm whose

corresponding times do not fit in any time window
of customer n (n′ or v) are removed.
8. For constraint C6.2 (call-in order delivery time re-

striction), decision variables xdtnmn′m′ , ydtnmm′ , and odtvm
whose corresponding timesdonotfit inany timewindow
of call-in customer n (n′ or v) are removed.
9. The layover time of each driver is fixed. Hence, a

decision variable zdtnmm′ that does not satisfym′ −m �
ML

d is removed.
10. As each shift starts and ends at a base, decision

variables ydtn0m′ and ydtnm(|M|−1) for the corresponding
operation nodes are removed.
With the above preprocessing, we can describe the

mathematical model of the IRP-Challenge2016 as
follows, where P represents a large (penalty) value.

Minimize
cD + cT + cL

q
, (1)

subject to

∑
n∈N

∑m′−ML
d

m−�m
zdtnm− m−+ML

d( )

≤ P · 1 − ∑m
m−�0

ydtbm−m

( )
+ P · 1 − ∑|M|−1

m+�m′
ydtbm′m+

( )

+ P · ∑m′

m−�m

∑m′

m+�m−
ydtbm−m+

+min 1,
∑

v∈V∪C
AL

v ·
∑m′−ES

v

m−�m

∑m′

m+�m−+ES
v

ydtvm−m+
⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭

∀d ∈ D, t ∈ T,m ∈ M,m′ ∈ M, (2)

Table 4. Decision Variables for IRP-Challenge2016

Variable Domain Description

xdtnmn′m′ {0, 1} Traveling edge, xdtnmn′m′ � 1 for driver d (∀d ∈ D)
driving trailer t (∀t ∈ T), departing from node n
(∀n ∈ N) at the minute m (∀m ∈ M) and arriving at node n′
(∀n′ ∈ N) at the minute m′ (∀m′ ∈ M,m′ ≥ m); 0 otherwise

ydtnmm′ {0, 1} Holding edge, ydtnmm′ � 1 for driver d (∀d ∈ D) driving
trailer t (∀t ∈ T), operating (if node n is an operation
node) and staying at node n (∀n ∈ N) from the minute
m (∀m ∈ M) to the minute m′ (∀m′ ∈ M,m′ ≥ m);
0 otherwise

zdtnmm′ {0, 1} Layover edge, zdtnmm′ � 1 for driver d (∀d ∈ D) driving
trailer t (∀t ∈ T), taking a layover from the minute m
(∀m ∈ M) to the minute m′ (∀m′ ∈ M,m′ ≥ m) after
departing from node n (∀n ∈ N); 0 otherwise

odtvm [0,QC
t ] Delivery quantity to customer v (∀v ∈ V ∪ C). The

delivery is performed by driver d (∀d ∈ D) and trailer
t (∀t ∈ T) and begins at the minute m (∀m ∈ M). Note
that we use positive values to indicate delivered quantity.

odtsm [−QC
t , 0] Load quantity at source s (∀s ∈ S). The load is

performed by driver d (∀d ∈ D) and trailer t (∀t ∈ T)
and begins at the minute m (∀m ∈ M). Note that we
use negative values to indicate loaded quantity.

Table 5. Auxiliary Variables for IRP-Challenge2016

Variable Domain Description

cD [0,+ ∞) Total distance cost
cT [0,+ ∞) Total time cost
cL [0,+ ∞) Total layover cost
q [0,+ ∞) Total delivered quantity
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∑
n,n′∈N

ET
nn′ ·

∑m′−ET
nn′

m−�m
xdtnm−n′ m− +ET

nn′( )

≤ MD
d +MD

d ·∑
n∈N

∑m′−ML
d

m−�m
zdtnm− m− +ML

d( )

+ P · 1 − ∑m
m−�0

ydtbm−m

( )
+ P · 1 − ∑|M|−1

m+�m′
ydtbm′m+

( )

+ P · ∑m′

m−�m

∑m′

m+�m−
ydtbm−m+

∀d ∈ D, t ∈ T,m ∈ M,m′ ∈ M, (3)
∑

n,n′∈N
ET
nn′ ·

∑m∗−ET
nn′

m−�m
xdtnm−n′ m− +ET

nn′( )
≤ MD

d + P · 1 − zdtn∗m∗ m∗ +ML
d( )

( )
+ P · 1 − ∑m

m−�0
ydtbm−m

( )
+ P · 1 − ∑|M|−1

m+�m′
ydtbm′m+

( )

+ P · ∑m′

m−�m

∑m′

m+�m−
ydtbm−m+

∀d ∈ D, t ∈ T,m ∈ M,m′ ∈ M,n∗ ∈ N,m ≤ m∗ ≤ m′,
(4)

∑
n,n′∈N

ET
nn′ ·

∑m′−ET
nn′

m−�m∗
xdtnm−n′ m− +ET

nn′( )
≤ MD

d +∑
n∈N

ET
n∗n · xdtn∗m∗n m∗ +ET

n∗n( )

+ P · 1 − zdtn∗m∗ m∗+ML
d( )

( )
+ P · 1 − ∑m

m−�0
ydtbm−m

( )

+ P · 1 − ∑|M|−1

m+�m′
ydtbm′m+

( )
+ P · ∑m′

m−�m

∑m′

m+�m−
ydtbm−m+

∀d ∈ D, t ∈ T,m ∈ M,m′ ∈ M,n∗ ∈ N,m ≤ m∗ ≤ m′,
(5)∑

t∈T

∑
n∈N

∑
n′∈N

∑min m,|M|−1−ET
nn′{ }

m−�max 0,m−ET
nn′{ }

xdtnm−n′ m−+ET
nn′( )

+∑
t∈T

∑
n∈N

∑min m,|M|−1−ML
d{ }

m−�max 0,m−ML
d{ }
zdtnm− m−+ML

d( )

+∑
t∈T

∑
n∈N∗

∑m
m−�0

∑|M|−1

m+�m
ydtnm−m+ ≤ 1 ∀d ∈ D,m ∈ M, (6)

∑
d∈D

∑
n∈N

∑
n′∈N

∑min m,|M|−1−ET
nn′{ }

m−�max 0,m−ET
nn′{ }

xdtnm−n′ m−+ET
nn′( )

+∑
d∈D

∑
n∈N

∑min m,|M|−1−ML
d{ }

m−�max 0,m−ML
d{ }
zdtnm− m−+ML

d( )

+∑
d∈D

∑
n∈N∗

∑m
m−�0

∑|M|−1

m+�m
ydtnm−m+ ≤ 1 ∀t ∈ T,m ∈ M , (7)

0 ≤ QB
t −

∑
d∈D

∑
v∈V

∑m
m′�0

odtvm′ −∑
d∈D

∑
s∈S

∑m
m′�0

odtsm′

≤ QC
t ∀t ∈ T,m ∈ M, (8)∑

n∈N∗

∑m′−ML
d−ES

n

m−�m

∑m′

m+�m−+ML
d+ES

n
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≤ P · 1 − ∑m
m−�0

ydtbm−m

( )
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( )

+ P · ∑m′

m−�m

∑m′
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+min 1,
∑

v∈V∪C
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v ·
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v

m−�m

∑m′

m+�m+ES
v

ydtvm−m+
⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭

∀d ∈ D, t ∈ T,m ∈ M,m′ ∈ M, (9)
odtsm ≥ −QC

t · ∑
m′∈M

ydtsmm′ ∀d ∈ D, t ∈ T, s ∈ S,m ∈ M ,

(10)
IMv · ∑

m′∈M
ydtvmm′ ≤ odtvm ≤ ICv · ∑

m′∈M
ydtvmm′

∀d ∈ D, t ∈ T, v ∈ V,m ∈ M, (11)

RL
r ≤ ∑

d∈D

∑
t∈T

∑RE
r

m�RB
r

odtRC
r m ≤ RU

r ∀r ∈ R , (12)

ISv ≤ IBv −Uvh +
∑
d∈D

∑
t∈T

∑MH ·(h+1)−1

m�0
odtvm ≤ ICv

∀v ∈ V, h ∈ H, (13)∑
n′∈N

∑
m′∈M

xdtn′m′nm � ∑
m′∈M

ydtnmm′

∀d ∈ D, t ∈ T,n ∈ N,m ∈ M − {0}, (14)∑
m′∈M

zdtnm′m � ∑
n′∈N

∑
m′∈M

xdtnmn′m′

∀d ∈ D, t ∈ T,n ∈ N,m ∈ M, (15)∑
m′∈M

ydtnm′m � ∑
n′∈N

∑
m′∈M

xdtnmn′m′ + ∑
m′∈M

zdtnmm′

∀d ∈ D, t ∈ T, n ∈ N,m ∈ M − {|M| − 1}, (16)∑
m∈M

ydtb0m � 1 ∀d ∈ D, t ∈ T, b ∈ B , (17)∑
m∈M

ydtbm(|M|−1) � 1 ∀d ∈ D, t ∈ T, b ∈ B , (18)
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t∈T

FDt · ∑
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nn′ ·

∑
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m�0
xdtnmn′ m+ET

nn′( ) ,
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d∈D
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t∈T
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m′ −m( ) · ydtbmm′

( )
,
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d∈D
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d

m�0
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Constraints (2) impose layover amount restriction
(C1.1), ensuring that there is no more than one layover
per shift if there are layover customers visited on its
route. These only make sense when minutesm andm′
are the start and the end time of a shift, respectively—
that is, there is a holding edge at the base ending
at minute m, a holding edge at the base starting at
minutem′, and no holding edge at the base betweenm
andm′. Constraints (3), (4), and (5) limit themaximum
driving time (C2.2), where m and m′ denote the start
and the end time of a shift as mentioned above, n∗
denotes the last visited node before a layover, and m∗
denotes thedeparture time fromnoden∗. Constraints (3)
are defined for each shift, ensuring that the total
driving time of a shift should not exceed the driver’s
maximumdriving timeMD

d if there is no layover in the
shift, and not be longer than 2 ·MD

d otherwise. Con-
straints (4) and (5) guarantee, respectively, that the
cumulative driving time before arriving at n∗ and after
departing from the succeeding node of n∗ will never
exceed thedriver’smaximaldriving time.Constraints (6)
ensure that the working time and the layover time
of a driver never overlap, implying that for each
driver at each minute, the total number of visited
traveling, holding, and layover edges covering the
minute should not exceed one. Constraints (7) restrict
usage conflict of trailers (C3.1). They are defined for
each trailer at each minute, implying that the total
number of the three types of edges should not be
greater than one. Constraints (8) restrict the capacity
of trailers (C3.3), indicating that the initial quantity in
the trailer minus the total operation quantity in the
whole horizon should always be nonnegative and
never exceed its tank capacity. Constraints (9) impose
the layover amount restriction (C1.1) and the in-
ternodes duration in a shift (C4.2). These ensure that
there can be no holding edge whose interval is longer
than the setup time plus the layover duration, unless
there are layover customers and an overlong holding
edge signifies a layover. Constraints (10) and (11)
ensure the operation quantity restriction (C4.5) and
the delivery quantity restriction (C4.6). Constraints (10)
guarantee that the loaded quantity is equal to zero
at unvisited sources and can never exceed the tank
capacity of the trailer. Constraints (11) ensure that
the quantity delivered to a VMI customer should
never be less than the minimal delivery quantity or
greater than the customer’s tank capacity if the cus-
tomer is visited. Constraints (12) satisfy call-in orders
(C6.1), requiring that the total quantity delivered to a
call-in customer within the order’s time window
should be between the minimum and the maximum
required quantity. Constraints (13) limit the capacity
of VMI customers (C5.1) and the run-out avoidance
(C5.2). These constraints are applied to each VMI
customer, implying that the remaining quantity at the

end of each hour is equal to the quantity in the cus-
tomer’s tank at the beginning minus the forecasted
cumulative consumption until the current hour plus
the total delivered quantity until the last minute of the
hour and should never be greater than its capacity or
less than its safety level. Constraints (14), (15), (16),
(17), and (18) are defined for each pair of driver and
trailer to guarantee the route connectivity of a shift,
while ensuring that each shift starts and ends at a
base. Constraints (14) are defined for each node n and
each minute m except the first minute, implying that
the total number of traveling edges ending at node n
at minute m is equal to the total number of visited
holding edges at n starting from m. Constraints (15)
are defined for each node n and each minute m,
meaning that the total number of layover edges at
node n ending atminutem is equal to the total number
of visited holding edges starting from n at m. Con-
straints (16) are defined for each node n and each
minute m, except the last minute, restricting that the
total number of holding edges at node n ending at
minute m is equal to the total number of visited
traveling edges and layover edges, which start from n
at m. Constraints (17) and (18) guarantee that each
route for a shift is a cycle that starts from and ends at
the base. The total number of holding edges that start
from the beginning of the horizon at the base should
be one, while there only exists one holding edge at the
base in the last minute of the horizon. Finally, con-
straints (19), (20), and (21), respectively, define the
total distance cost, total time cost, and total layover
cost, whereas constraint (22) defines the total de-
livered quantity. Our formulation yields a mixed-
integer fractional programming model that can be
converted to the standard mixed-integer linear pro-
gramming (MILP) model via the Charnes–Cooper
transformation proposed in Charnes and Cooper (1962)
or the parametric approach described in Dinkelbach
(1962) and Bajalinov (2013).

5. Solution Method
5.1. Main Framework
We present a matheuristic algorithm for IRP-
Challenge2016 that integrates a multineighborhood
search-based metaheuristic with mathematical pro-
gramming. The main framework of the proposed
matheuristic is given in Algorithm 1, where s∗ is re-
turned as the best solution. The algorithm starts by
generating an initial feasible solution with a con-
structive heuristic algorithm (line 1), followed by the
matheuristic optimization procedure (lines 4–11) to
improve the solution. At each iteration of the math-
euristic optimization, a neighborhood is selected
based on a probability, which is adjusted in an adap-
tive way according to the historical performance of
the neighborhood move (lines 5 and 6). The selected
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neighborhood is then explored, and the best neigh-
boring solution is returned to replace the current so-
lution s (line 7). The best solution s∗ is updated if
an improved solution is found (lines 8–10). When a
specified termination condition is met, the algorithm
terminates and returns the best solution s∗.

Algorithm 1 (The Matheuristic Algorithm for IRP-
Challenge2016)

Input: Instance I
Output: Best solution s∗ found

1: s ← InitialSolutionGeneration(I) // s denotes the
current solution

2: s∗ ← s // s∗ denotes the best solution found
3: s′ ← Ø // s′ denotes the previous solution
4: while termination condition is not met do
5: 1i ←NeighborhoodSelection(s, s′, s∗) // select

a neighborhood with a probability
6: s′ ← s
7: s ← MatheuristicSearch(I, s, 1i) // see

Algorithm 2
8: if s is better than s∗ then
9: s∗ ← s

10: end if
11: end while

5.2. Initial Solution Generation
We propose a constructive heuristic to generate an
initial feasible solution. The algorithm obtains a so-
lution by chronologically constructing shifts one after
another. For the construction of each shift, the algo-
rithm randomly selects a driver–trailer pair that is
available and compatible. It then moves the selected
pair to one of the reachable operation nodes from the
current node and determines the operation quantity
repeatedly. A node is reachable if the driver is able to
visit it and return to the base before reaching the end
of its time window or before exceeding the maximum
driving time. The earlier a reachable customer runs
out of stock, the greater the chance of visiting it in the
current shift. More precisely, we sort all customers by
their start time of shortage and select one of the top τk

customers as the kth one to visit in the shift, where τ
is a parameter that controls the randomness of the
construction. If the gap between the start times of
shortage at two customers is less than μ, the customer
with a smaller distance cost, smaller time cost, and
fewer compatible trailers is preferred. Similarly, the
driver–trailer pair tends to visit a reachable source if
there is not enough quantity left in the trailer, and the
probability of refilling it is equal to

̅̅̅̅̅̅̅̅̅̅̅
η · ρ/QC

t

√
, where ρ

is the remaining quantity in trailer t’s tank and η is a
parameter to control the aggressiveness of refilling.
The algorithm makes use of the Order Up-to Level
policy as described in Coelho, Cordeau, and Laporte
(2013) to determine the quantity to be loaded or

delivered.When there is no reachable operation node,
the trailer returns to the base, and the construction of
the shift ends. Finally, the process of generating the
initial solution stops if there is no available pair to
construct a new shift. In addition, we use the concept
of economic level, which forbids small-quantity de-
livery. If the quantity remaining in a customer’s tank
is above the economic level, the operation for this
customer will be postponed or cancelled. In our al-
gorithm, the economic level of a customer v is set
according to the capacity of its tank and the visiting
trailer t, which is equal to min{0.3 · ICv , 0.4 ·QC

t }. As it is
a greedy algorithm with a large number of random
choices, this process is not guaranteed to produce a
feasible solution at every single run. The procedure
is thus restarted until a feasible solution is found.
Fortunately, it is able to generate feasible solutions
within a few attempts and a reasonable time for most
benchmark instances. The effectiveness of this con-
structive heuristic will be discussed later in Section 6.3.

5.3. Matheuristic Optimization
As described above, after an initial feasible solution
is generated, we launch the matheuristic optimiza-
tion procedure to improve the solution in an itera-
tive manner. As the IRP-Challenge2016 combines in-
ventory management and vehicle routing, we need
to decide routes, times, and operation quantities of a
complete solution. As different types of constraints
and fine-grained time discretization make the model
described in Section 4 too large to simultaneously
consider all these factors, we adopt a decomposition
scheme to optimize all the factors in a hierarchical
way. Specifically, the original problem is decomposed
into one master problem (routes adjustment) and two
subproblems (timing optimization and quantity de-
cision), as shown in Figure 1. As previously indicated,
we employ MIP and LP as slave methods and embed
them within a multineighborhood local search pro-
cedure. To explore as many routes as possible, we
introduce six neighborhoods to adjust routes of the
current solution. When searching the selected neigh-
borhood (see Algorithm 2), we first adjust routes of
the current solution to obtain the set of the neigh-
boring solutions 1i(s) (line 1). To enhance the search
efficiency of the algorithm, we adopt several accel-
eration strategies for the local search, as described in
Section 5.3.4. Specifically, we perform neighborhood
sampling and reduction on1i(s), which ignores some
unpromising neighboring solutions, thus reducing
the size of the neighborhood (line 2). We then opti-
mize the timing for each neighboring solution by
solving an MIP model (line 3) and rank the solutions
by incremental value of the total cost in an increas-
ing order (line 4). Finally, we search the ordered so-
lutions, decide operation quantities by solving an LP
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model, and find the best neighborhood move (line 5).
If there is no feasible solution in the neighborhood of
the current feasible solution, nothing is recorded in
the output s′, which is regarded as the worst solution
in line 8 of Algorithm 1. The search then proceeds
with the evaluation of the next neighborhood.

Algorithm 2 (Matheuristic Search Procedure for Neigh-
borhood 1i)

Input: Current solution s and neighborhood 1i

Output: Best neighboring solution s′
1: 1i(s) ← adjust the routes of s // 1i(s) denotes

the set of neighboring solutions
2: 1̃i(s) ← perform neighborhood sampling and

reduction for 1i(s)
3: Solve timing optimization subproblem for each

solution in 1̃i(s)
4: L ← rank the solutions in 1̃i(s) by the incre-

mental value of the resulting total cost in
an increasing order // L denotes the list of
the ordered solutions

5: s′ ← search the list L, solve quantity decision
subproblem and find the best neighboring
solution

5.3.1. Routes Adjustment. In order to adjust the routes
of a solution in various ways, we introduce six neigh-
borhoods that are based on the following: adding an
operation (11), removing an operation (12), replacing
an operation (13), swapping two operations within a
shift (14), moving an operation from one shift to
another (15), and adding a shift (16).

• 11 inserts a new operation between two existing
operations of a shift, before the first operation of a
shift, or after the last operation of a shift. Figure 2(a)
presents an example of11 where a new node c, which
has not been visited in the shift, is inserted between
nodes a and b.
• 12 removes an existing operation, as opposed to

moving11. Figure 2(b) shows an example of12 where
node c is removed from the shift.
• 13 changes the visiting node of an existing op-

eration. It can be regarded as removing an operation
and adding a new operation visiting a different node
in the same order in the shift. Figure 2(c) gives an
example of13, where a visiting node c between nodes
a and b is replaced by a new node d.
• 14 consists of exchanging a pair of operations

belonging to different nodeswithin a shift. Figure 2(d)
provides an example of 14, where nodes b and e are
swapped within a shift.
• 15 moves an existing operation from one shift to

another. It can be regarded as removing an operation
in a shift, and adding a new operation visiting the
same node in another shift. Figure 2(e) shows an
example of15 where the operation belonging to node
d is moved.
• 16 constructs a new shift. It is conducted by

performing several 11 moves, one by one, where a
new operation is always inserted after the last oper-
ation of the shift that is being constructed. Figure 2(f)
presents an example of 16 where a new shift visiting
nodes a, c and b is sequentially constructed.
As exploring all the neighborhoods is time-

consuming, only one neighborhood is selected and
evaluated at each iteration of the local search. The
selection of a neighborhood is based on a roulette-
wheel principle and an adaptive adjustment mecha-
nism. More precisely, we let Ω � {11,12,13,14,15,
16} denote the set of all the neighborhoods and
assign a selection weight ωi to each neighborhood
1i ∈ Ω. At each iteration of the local search, neigh-
borhood 1i is chosen with a probability pi calculated
as follows:

pi � ωi∑|Ω|
j�1 ωj

. (23)

The selection weights are adjusted to control the
choice of the neighborhood for search space explo-
ration. Initially, the weight of each neighborhood is
set to the same value ω̄, giving each neighborhood an
equal selection probability. As the search progresses,
the weight is dynamically adjusted to control how
often a particular neighborhood is selected during
the search, based on the historical performance of
each neighborhood. At each iteration iter of the local
search, the best neighboring solution s is obtained by

Figure 1. Decomposition Scheme for the IRP-
Challenge2016
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exploring the selected neighborhood1i of the current
solution s′. Let Δi � f (s) − f (s′) denote the incremen-
tal value of the objective obtained for the selected
neighborhood 1i at iteration iter. We record the his-
torical incremental value of the objective Δ∗

i , which is
initially set to 0 for each neighborhood. When Δi is
obtained at a certain iteration, Δ∗

i is updated by Δ∗
i �

δ0 · Δ∗
i + (1 − δ0) · Δi. If there is no feasible neighbor-

ing solution in 1i, then Δi does not exist, and Δ∗
i is

updated by Δ∗
i � δ0 · Δ∗

i + δ1 · |Δ∗
i |. We next adjust the

weight of the selected neighborhood 1i by compar-
ing Δ∗

i with the median of the historical incremental
values of the objective over all the neighborhoods
as follows:

ωi �
ωi + λ · (β − ωi), if Δ∗

i is smaller than
the median value

ωi + λ · (α − ωi), otherwise,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (24)

where α and β (0<α< β) are the lower and the up-
per bounds of the selection weight, respectively.
The value of the weight for each neighborhood al-
ways lies in the interval [α, β], where λ ∈ [0, 1] is the

adjustment factor that controls the convergence speed
of ωi toward the bounds. The weights of the neigh-
borhoods that are not selected at the current iteration
remain unchanged. One observes that the value of ωi
will increase if Δ∗

i is better than the median value
over all the neighborhoods. The aim of the adaptive
weight-adjustment mechanism is to encourage the se-
lection of a neighborhood whose contribution to the
improvement of the solution is greater than the me-
dian level of all the neighborhoods.

5.3.2. Timing Optimization. Once the routes of a so-
lution are adjusted by a neighborhood move, timing-
related decision variables are optimized, which in-
clude start times of shifts and operations. As a change
made by a neighborhood move is local, and only the
routes of one or two shifts are adjusted at each iter-
ation, there is no need to optimize the start time of all
the shifts and operations. Thus, we propose an MIP
model that only considers one affected shift and opti-
mizes the start time of this shift and its operations.
Given the route of a shift, the notations for the

timing optimization model are presented in Table 6.

Figure 2. (Color online) Illustration of Neighborhood Moves

Notes. (a) Add an operation. (b) Remove an operation. (c) Replace an operation. (d) Swap two operations. (e) Move an operation. (f) Add
a shift.
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We let r � 〈r0, r1, . . . , rg, rg+1〉 denote the route of a shift
that is adjusted by a neighborhood move and re-
quired to optimize the timing-related decision vari-
ables. The earliest start time and the latest end time
of a shift can be calculated by considering the mini-
mum intershifts duration (C2.1), the time windows of
drivers (C2.3), and the usage conflict of trailers (C3.1)
under the condition that other shifts are fixed and not
considered in the model. Table 7 gives the decision
variables for the timing optimization model. As de-
scribed above, each customer has a set of opening
time windows, which limit the time when delivery to
the customer can occur. Each call-in customer has
a set of order time windows, which, combined with
opening time windows, confine the delivery times to
the call-in customers. To handle the time windows
consistently for both VMI and call-in customers, we
identify the intersections of opening time windows
and order time windows for each call-in customer.
We then use the intersections of time windows to
limit delivery time for call-in customers, while using
opening time windows for VMI customers. The timing
optimization model is as follows.

Minimize ug+1 − u0, (25)
subject to

∑g+1
k�1

zk ≤ min 1,
∑g
k�1

AL
rk

{ }
, (26)

∑g
k�0

ET
rkrk+1 ≤

∑g+1
k�1

zk ·MD
d +MD

d , (27)

zk ≤
∑k−2
i�0

ET
riri+1 ≤ MD

d

( )
∧ ∑g

i�k
ET
riri+1 ≤ MD

d

( )( )
∀k ∈ {1, . . . , g + 1}, (28)

ET
rk−1rk + ES

rk−1 + zk ·ML
d ≤ uk − uk−1 ≤ ET

rk−1rk

+ ES
rk−1 + (1 − zk) ·

(
ML

d − 1
) + zk · |M|

∀k ∈ {1, . . . , g + 1}, (29)∑
w∈WN

rk

ykw � 1 ∀k ∈ {k|k ∈ {1, . . . , g + 1}, rk ∈ V ∪ C} ,

(30)
ykw ·WB

nw ≤ uk ≤ WE
nw + (1 − ykw) · |M|

∀k ∈ {k|k ∈ {1, . . . , g + 1}, rk ∈ V ∪ C},w ∈ WN
rk , (31)

u0 ≥ et , (32)
ug+1 ≤ lt . (33)

To make the shift as compact as possible, objective (25)
minimizes the time span of the shift. Constraint (26)
guarantees layover amount restriction (C1.1), ensuring
that the total amount of layovers is not more than
one when there exists at least one delivery to a lay-
over customer, and is zero otherwise. Constraints (27)
and (28) impose maximum driving time (C2.2). Con-
straints (27) ensure that the total driving time for
a given route should not exceed the given maximal
driving time, where the maximal driving time is
doubled if there exists a layover in the shift. Con-
straints (28) are stated for each node on the route, to
guarantee that if there is a layover before arriving at a
given node, both the cumulative driving time before
reaching its preceding node and after leaving it do
not exceed the maximum driving time of the driver.
Constraints (29) present the relationship among lay-
over time (C1.1), fixed operation time (C4.1), and in-
ternodes duration in a shift (C4.2) by restricting the
difference value between the start time of two suc-
cessive operations. These constraints are defined for
each operation on the route, imposing that (zk � 0)⇔
(ET+ ES ≤uk −uk−1<ET+ ES+ML) and (zk � 1) ⇔ (ET +
ES + ML ≤ uk − uk−1). That is to say, there must be a

Table 6. Notations for the Timing Optimization Model

Notations Description

r r � 〈r0, r1, . . . , rg, rg+1〉 is the route of the shift under
consideration, where r0 and rg+1 represent the base,
rk(k � 1, . . . , g) denotes the kth visited operation node
on the route, and g refers to the number of operation
nodes.

d Driver assigned to the shift under consideration
et Earliest start time of the shift under consideration
lt Latest end time of the shift under consideration

Table 7. Decision Variables for the Timing Optimization Model

Variable Domain Description

uk M If k � 0, u0 represents the start time of the shift under consideration; if k � 1, . . . , g, uk
represents the start time of the operation that happens at node rk ; and if k � g+ 1,
ug+1 represents the end time of the shift.

zk {0, 1} zk � 1, k � 1, . . . , g+ 1 if and only if there is a layover after leaving from node rk−1 and
before arriving at node rk; 0 otherwise.

ykw {0, 1} ykw � 1, k � 1, . . . , g, rk ∈ V ∪ C, if and only if the operation that happens at customer
rk is performed within the time window w of the customer; 0 otherwise.
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layover if and only if the waiting time is longer than
the layover time, and vice versa. Constraints (30) and
(31) impose time windows of customers (C4.4) and
call-in order time restrictions (C6.2). Constraints (30)
are defined for each delivery operation, indicating
that the operation performed at each node must lie
in a time window of the corresponding node, while
constraints (31) determine the time window of the
operation for each node. Constraints (32) and (33)
restrict the start time and the end time of the shift,
respectively.

The time complexity of this subproblem is still
unknown, although there are some similar problems
reported in the literature. Archetti and Savelsbergh
(2009) introduced a Truckload Trip Scheduling Prob-
lem and proposed anO(n3)-time algorithm for solving
it, where n is the number of nodes to visit. However,
only one possible opening timewindow is considered
for each node. Benoist et al. (2011) solved a Shift
Scheduling Problem with a linear time-space greedy
algorithm, which cannot guarantee feasibility or op-
timality. Another difference between the above prob-
lems and the proposed timing optimization model is
that both the Truckload Trip Scheduling Problem and
the Shift Scheduling Problem require that either the
beginning or the ending time of a shift is fixed. There
is a naive pseudo-polynomial time algorithm for the
timing optimization model, which expands a node
into a series of node–time pairs 〈n, t〉 and sets the costs
to t′ − t for edges from 〈n, t〉 to 〈n′, t′〉, whereas this cost
is zero if n or n′ is the base node. Furthermore, an edge
from 〈n, t〉 to 〈n′, t′〉 exists only if n and n′ are two
adjacent nodes on the route of the shift, and t lies in the
time windows of n, so do t′ and n′. Then, the problem
is converted into finding a shortest path from the base
at the earliest start time of the shift to the base at the
latest end time of the shift.

5.3.3. Quantity Decision. Once the routes of a solution
are adjusted and the time-related decision variables
are optimized, the total cost of the solution is fixed.
To complete the solution, we need to decide the quan-
tities of operations so as to maximize the total delivered
quantity such that the logistic ratio of the solution
is minimized. Thus, we propose an LP model to de-
termine the operation quantity for each operation in a
solution. Because the routes and times have been fixed
at this stage, the only constraints to be considered are
the quantity-related ones, such as capacity of trailer
(C3.3), run-out avoidance (C5.2), and call-in orders sat-
isfaction (C6.1).

The notations for the quantity decision model are
presented in Table 8, where op � 〈op0, . . . , opl〉 denotes
the list of all the operations in a solution, which are
ranked in chronological order according to their start
times. Table 9 gives the decision variables for the

quantity decision model. For convenience and con-
sistency, we adopt a uniform symbol xk to denote the
operation quantity and use positive and negative
values to represent delivery and load, respectively.
A trailer should be filled with products each time it

visits a source. To check the capacity of trailers (C3.3),
the carried product quantities in the trailers should
be compared with their capacities after each loading
or delivery operation. However, a trailer’s product
quantity will not increase between two load opera-
tions, and, hence, we only need to verify that the
trailer’s quantity is nonnegative after the last delivery
operation and before a load operation. Similarly, the
product quantity in a VMI customer’s tank in each
hour during the horizon will not increase before a
deliveryoperation. Therefore,weonly need toguarantee
that the customer’s quantity in the hour before a de-
livery cannot be less than the safety level and to assure
that the quantity in the hour when a delivery occurs

Table 8. Notations for the Quantity Decision Model

Notations Description

op op � 〈op0, . . . , opl〉 is the list of all the operations ranked in
chronological order, where l refers to the number of
operations.

ON
k ON

k represents the node where the operation opk happens.
OT

k OT
k represents the trailer performing the operation opk .

AC
k AC

k � 1 denotes that the operation opk is a delivery to a
customer, and AC

k � 0 indicates that the operation opk is
a load from a source.

AT
kt AT

kt � 1 if and only if the operation opk is performed by
trailer t; 0 otherwise.

AN
kn AN

kn � 1 if and only if the operation opk happens at node n;
0 otherwise.

mk mk , k � 0, . . . , l represents the start time (in minutes) of the
operation opk.

hk hk , k � 0, . . . , l represents the hour to which mk belongs.
KF KF � {0} ∪ {k|hk �� hk−1, k � 1, . . . , l} is the index set of the

first operations in each hour during the horizon.
KL KL � {k|hk �� hk+1, k � 0, . . . , l − 1} ∪ {l} is the index set of

the last operations in each hour during the horizon.
AH

nh AH
nh � 1 if and only if there exists an operation opk that
happens at the node n in the hour h, that is,ON

k � n and
hk � h; 0 otherwise.

Note. op � 〈op0, . . . , opl〉 denotes the list of all the operations in a
solution, which are ranked in chronological order according to their
start times.

Table 9. Decision Variables for the Quantity Decision
Model

Variable Domain Description

xk [(AC
k − 1) ·QC

OT
k
,AC

k ·QC
OT

k
] Operation quantity; positive

values represent delivery,
and negative values represent
load.
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does not exceed the tank’s capacity. We also check the
inventory level in the last hour of the horizon. By
performing this preprocessing, a large number of con-
straints can be eliminated, which makes the model
much easier to solve.

The quantity decision model is as follows.

Maximize
∑l

k�0
AC

k · xk, (34)

subject to

QB
t −

∑i−1
k�0

AT
kt · xk ≥ 0 ∀(t, i) ∈

{
(t, i)|t ∈ T,

i∈ {0, . . . , l},AT
it � 1,AC

i � 0
}
, (35)

QB
t −

∑l

k�0
AT

kt · xk ≥ 0 ∀t ∈ T , (36)

QB
t −

∑i

k�0
AT

kt · xk � QC
t ∀(t, i) ∈

{
(t, i)|t ∈ T,

i ∈ {0, . . . , l},AT
it � 1,AC

i � 0
}
, (37)

IMON
k
≤ xk ≤ ICON

k
∀k ∈

{
k|k ∈ {0, . . . , l},ON

k ∈ V
}
, (38)

RL
r ≤∑

k∈K′
xk ≤ RU

r ∀r ∈ R,K′ �
{
k|ON

k � RC
r ,

mk ∈ [RB
r ,R

E
r ]
}
, (39)

IBv+
∑i−1
k�0

AN
kv · xk −Uv(hi−1) ≥ ISv ∀(v, i) ∈

{
(v, i)|v ∈ V,

i ∈ KF,AH
vhi � 1

}
, (40)

IBv +∑i

k�0
AN

kv · xk −Uvhi ≤ ICv ∀(v, i) ∈ (v, i)|v ∈ V,
{

i ∈ KL,AH
vhi � 1

}
, (41)

ISv ≤ IBv +∑l

k�0
AN

kv · xk −Uv(|H|−1) ≤ ICv ∀v ∈ V. (42)

Objective (34) maximizes the total delivery quantity
of all the operations. Constraints (35), (36), and (37)
restrict the capacity of trailers (C3.3). Constraints (35)
are defined for each loading operation, implying that
the total quantity delivered minus the total quantity
loaded in a trailer before the current load operation
should not exceed the product quantity in the trailer
at the beginning of the horizon. Constraints (36) en-
sure nonnegative quantity in the trailer after the last
operation, and constraints (37) ensure that the quan-
tity loaded from a source should be equal to the
capacity of the trailer minus its current quantity.
Constraints (38) impose a delivery-quantity restric-
tion (C4.6), limiting the quantity delivered to eachVMI

customer to the range from the minimum delivery
amount to the capacity of the customer’s tank. Con-
straints (39) satisfy the call-in orders (C6.1), imposing
that for each order, the sum of deliveries in the order’s
time window at the call-in customer is not less than
the minimum quantity and does not exceed the maxi-
mum quantity. Constraints (40), (41), and (42) guar-
antee the capacity of VMI customers (C5.1) and run-
out avoidance (C5.2). Constraints (40) are stated for
each VMI customer hourly, so as to ensure that the
amount of the residual in the customer’s tank before
the first delivery operation does not fall below the
safety level. Constraints (41) imply that for each VMI
customer, the quantity in the customer’s tank after
the last delivery operation conducted in each hour
should not exceed the capacity. Finally, constraints (42)
guarantee that in the whole horizon, the quantity in
each VMI customer’s tank should not be less than the
safety level or exceed the capacity.

5.3.4. Acceleration Strategies. To enhance the search
efficiency of the multineighborhood search proce-
dure, we incorporate several acceleration strategies,
which include neighborhood reduction, neighbor-
hood sampling, and neighborhood estimation. In
neighborhood reduction, neighborhood moves that
have little potential to improve the solution are not
considered, whereas neighborhood sampling en-
sures that only a part of the entire neighborhood is
evaluated at each iteration. In neighborhood estima-
tion, more attention is paid to the promising neigh-
borhood moves.
Local search typically evaluates numerous candi-

date solutions to perform a single move at each it-
eration. Evaluation of too many moves can have a
negative impact on the search performance. This ef-
fect is amplified in our situation, as, once the routes
of a solution are adjusted by a neighborhood move,
we need to solve two subproblems to evaluate the
neighboring solution. For efficiency, our matheuristic
algorithm ignores the neighborhood moves that have
little potential to improve on the objective value by
considering the traveling distance and operation fre-
quency in the exploration of the neighborhood. When
adjusting the routes by a neighborhood move, we only
visit certain nodes on the adjusted route. A node should
not be too far away from its preceding and succeeding
nodes with respect to the traveling distance—that is, a
driver can only drive to the top |N| · γ nearest nodes
from its current node. Furthermore, the operation fre-
quency comes into play by ignoring a neighborhood
move if too many operations occur at a node within a
short time. Specifically, an empirical threshold in-
terval between operations is calculated, as shown in
Algorithm 3.
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Algorithm 3 (Calculation of Estimated Operation Interval
Threshold)

Input: VMI customer v
Output: estimated operation interval e

1: q− ← Uv(|H|−1) − IBv + ISv //minimal total deliv-
ery quantity

2: q+ ← Uv(|H|−1) − IBv + ICv // maximal total deliv-
ery quantity

3: q ← (q−+ q+ )/2 // estimated total delivery
quantity

4: m ← max
t∈T {QC

t } // maximal trailer capacity
5: c ← 1+ q/min{0.4 · ICv , 0.4 ·m} // estimated

operation count
6: e ← |H|/c

Even with the foregoing neighborhood reduction
method, the size of some neighborhoods can still
be very large. Therefore, we apply a neighborhood
sampling mechanism, whose effectiveness has been
verified on other large-size challenging optimization
problems, such as Wang, Lü, and Ye (2016). In detail,

only a part of the entire neighborhood is explored at
each iteration, while each neighboring solution has an
equal chance to be selected for evaluation.
In addition to neighborhood reduction and sam-

pling, we introduce a strategy to help the search focus
on promising neighborhoodmoves. The total cost of a
solution has a greater effect on the objective value
than the total delivered quantity, to the extent that
the objective value is unlikely to be improved if the
total cost is worsened by the neighborhood move.
Consequently, we apply a more aggressive reduction
strategy, which treats the partial objective as an es-
timate of the full objective to speed up the neigh-
borhood evaluation, as in Lü and Hao (2010). As
described above, the total cost of a neighboring so-
lution is fixed after the routes are adjusted and the
timing optimizationmodel is solved. At each iteration
of the local search, we first adjust the routes and solve
the timing optimization model for all neighboring
solutions to be evaluated. Then, the neighboring so-
lutions are ranked by their incremental values of the
total cost in increasing order and divided into seg-
ments. The algorithm examines segments of the or-
dered neighboring solutions one after another by
solving the quantity decision model for all solutions
in it and finding the best one. Once the best neigh-
boring solution in a certain segment is better than
the current solution, the search stops and returns the
improved solution. Otherwise, all neighboring solu-
tions in the sequence are evaluated, and the best one
is returned.

6. Computational Results and Analysis
6.1. Benchmark Instances
The benchmark data set of the IRP-Challenge2016
consists of two sets of 20 instances used in the fi-
nals of ROADEF/EURO Challenge 2016, where
sets B and X contain 15 and 5 instances, respectively.
Each instance is characterized by timespan, drivers,
trailers, and nodes. The schedule horizon of different
instances ranges from10 to 35days,while the number of
nodes ranges from 35 to 326. For most instances, the

Table 10. The Features of Benchmark Instances

Instance |H| |D| |T| |N| |B| |S| |V| |C|
2.12 240 13 15 326 1 1 301 23
2.13 240 5 5 55 1 1 53 0
2.14 840 5 5 55 1 1 53 0
2.15 240 4 3 136 1 1 131 3
2.16 240 7 4 186 1 1 183 1
2.17 840 4 3 136 1 1 131 3
2.18 840 4 3 136 1 1 131 3
2.19 840 5 5 55 1 1 53 0
2.20 840 7 4 186 1 1 183 1
2.21 840 7 4 186 1 1 183 1
2.22 504 13 15 326 1 1 301 23
2.23 504 13 15 326 1 1 301 23
2.24 240 5 6 35 1 2 23 9
2.25 840 5 6 35 1 2 23 9
2.26 840 5 6 35 1 2 23 9
2.27 240 13 15 326 1 1 301 23
2.28 240 7 4 186 1 1 183 1
2.29 840 4 3 136 1 1 131 3
2.30 504 13 15 326 1 1 301 23
2.31 504 13 15 326 1 1 301 23

Table 11. Setting of Parameters

Parameter Description Value Definition

τ Customer selection range expansion rate in construction 1.5 Section 5.2
η Refilling/delivering selection coefficient 2 Section 5.2
δ0 Adjustment factor of historical incremental values of the objective 0.5 Section 5.3.1
δ1 Adjustment factor of historical incremental values of the objective 0.6 Section 5.3.1
α Lower bound of selection weight 512 Section 5.3.1
β Upper bound of selection weight |Ω| · α Section 5.3.1
ω̄ Initial value of selection weight (α+ β)/2 Section 5.3.1
λ Adjustment factor of selection weight 0.5 Section 5.3.1
γ Threshold ratio of distance rank for traveling between nodes 10% Section 5.3.4
φ Segment size of neighborhood moves 10 Section 6.6
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number of drivers and trailers does not exceed 10.
Table 10 shows the size of instances, including the
numbers of hours, drivers, trailers, nodes, bases, sources,
VMI, and call-in customers. Set B consists of the in-
stances 2.12–2.26, while set X consists of the instances
2.27–2.31.

6.2. Experimental Protocol
Our matheuristic algorithm is programmed in C++
and compiled by using Visual C++ 2015. All com-
putational experiments are carried out on Windows
Server 2012 x64 with Intel Xeon E5-2698v3 (2.30GHz)

and 192 GB of RAM. The MIP and LP models are
solved by Gurobi 6.5.2 x64. The program uses 4 phys-
ical cores (8 logical threads) in each run. The main
parameters of thematheuristic algorithm are presented
in Table 11. A description of each parameter is given
in the column Definition.

6.3. Computational Results
Table 12 presents the final outcomes of the ROADEF/
EURO Challenge 2016, where all the algorithms were
tested by the committee and ranked according to the
normalized scores. Given a team t, for each instance i,

Table 12. Normalized Scores of the Finalists of the ROADEF/EURO Challenge

Rank Team ID Teams Country Score B Score B+X

1 S17 Ahmed Kheiri United Kingdom 0.00 0.00
2 S15 Simon Crevals et al. Netherlands 4.12 5.56
3 S24 Zhouxing Su et al. China 4.81 6.62
4 S12 Aldair Álvarez et al. Brazil 8.83 13.32
5 J9 Tamara Jovanovic et al. France 9.40 14.05
6 S13 Yun He et al. France 10.78 15.03
7 S9 Nabil Absi et al. France 13.64 18.64
8 S23 Federico Alonzo-Pecina et al. Mexico 8.02 —
9 S25 Yang Wang et al. China 8.35 —

Notes. The normalized score is defined at http://challenge.roadef.org/2016/en/qualification.php.
Boldface type indicates the authors of the present work.

Table 13. Computational Results Under 30 Minutes Runtime Limit

Construction Matheuristic

Instance fwin Average No. attempt Time (s) Best Average σ Time (s) Iteration

2.12 0.010024 0.027173 72 3 0.013304 0.014080 0.000440 1,789 1,135
2.13 0.028875 0.075641 1 < 1 0.034262 0.038856 0.001846 1,158 4,889
2.14 0.034971 0.096260 1 < 1 0.044646 0.047195 0.001625 1,675 1,920
2.15 0.024993 0.068700 7 < 1 0.033868 0.037221 0.001384 1,347 3,155
2.16 0.011783 0.032020 1 < 1 0.016728 0.017296 0.000310 1,773 1,747
2.17 0.032130 0.061916 3,209 35 0.042233 0.045794 0.001257 1,729 1,051
2.18 0.031882 0.061213 3,145 38 0.043116 0.045480 0.001089 1,770 1,040
2.19 0.034022 0.100847 1 < 1 0.043950 0.046859 0.001481 1,691 1,831
2.20 0.017486 0.034924 2 2 0.020864 0.021349 0.000392 1,796 843
2.21 0.016806 0.035522 1 2 0.020436 0.021520 0.000553 1,795 821
2.22 0.012667 0.027137 774 61 0.016229 0.017626 0.000468 1,784 630
2.23 0.012603 0.026796 3,451 272 0.016825 0.017357 0.000424 1,796 605
2.24 0.011219 0.027138 1 < 1 0.013705 0.014151 0.000239 1,697 4,323
2.25 0.011451 0.036199 5 < 1 0.014485 0.014804 0.000199 1,672 2,158
2.26 0.011281 0.041057 1 1 0.013974 0.014553 0.000283 1,736 2,119
2.27 0.010042 0.026587 14 7 0.013078 0.014129 0.000466 1,783 1,135
2.28 0.011799 0.031399 3 < 1 0.016180 0.017226 0.000369 1,641 1,776
2.29 0.030760 0.060626 7,323 79 0.042713 0.045430 0.001327 1,757 1,045
2.30 0.012633 0.026965 2,120 170 0.016964 0.017554 0.000362 1,794 593
2.31 0.012965 0.026572 1,748 151 0.016284 0.017412 0.000514 1,788 578

Notes. Column fwin gives the best objective values obtained in the finals of the ROADEF/EURO Challenge 2016 across all the competing teams.
On the right-hand side, columns Best and Average, respectively, present the best and the average objective values obtained by the matheuristic
algorithm. Column σ gives the standard deviation over multiple runs, while columns Time and Iteration, respectively, report the average
computing time and the number of iterations required to obtain the best solutionswith ourmatheuristic algorithm.Note that the reported time is
less than the maximum time limit if the best solution is reached before the maximum time limit has elapsed. In addition, columns Average, No.
Attempt, and Time on the left-hand side, respectively, present the average objective value, number of attempts, and run time for the first feasible
solution found by the constructive heuristic algorithm.
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let oit be the objective value for instance i, and let bi be
the best objective value for instance i obtained by all
the participants. The normalized score of team t for
instance i is 1 − exp((bi − oit)/bi), while the total score
is the sum of the normalized scores across all the
instances. As seen in Table 12, the preliminary ver-
sion of our matheuristic algorithm obtained the third
place in the finals.

The winner of the challenge presented a sequence-
based selection hyper-heuristic utilizing a hidden
Markov model to control over 20 predefined low-
level heuristics (operators) under an iterative frame-
work. Compared with this work, the number of neigh-
borhoods considered in the proposed algorithm is
much smaller, and our neighborhood selection strat-
egy is not aswidely used as that of hyper-heuristics. To
the best of our knowledge, these constitute the major
disadvantages of our algorithm compared with the
winner’s algorithm.

To assess the effectiveness of our new algorithm,
we conduct extensive tests on the complete problem
benchmark and compare our outcomes with the best
results reported in the finals of the ROADEF/EURO
Challenge 2016. We run two sets of experiments. In
thefirst experiment, we adopt the standard 30-minute
runtime limit used in the competition and perform

30 independent runs for each instance. In the second
experiment, we relax the runtime limit to 3 hours
and perform 10 independent runs for each instance.
Tables 13 and 14, respectively, show the computa-
tional results under these two runtime limits. Column
fwin gives the best objective values obtained in the
finals of the ROADEF/EURO Challenge 2016 across
all the competing teams. On the right-hand side,
columns Best and Average, respectively, present the
best and the average objective values obtained by the
matheuristic algorithm. Column σ gives the standard
deviation over multiple runs, while columns Time
and Iteration, respectively, report the average com-
puting time and the number of iterations required to
obtain the best solutions with our matheuristic al-
gorithm. Note that the reported time is less than the
maximum time limit if the best solution is reached
before the maximum time limit has elapsed. In ad-
dition, columns Average, No. Attempt, and Time on
the left-hand side of Table 13, respectively, present
the average objective value, number of attempts, and
run time for the first feasible solution found by the
constructive heuristic algorithm.
Under the standard runtime limit, Table 13 discloses

that the matheuristic algorithm produces high-quality
solutions that are comparable to the best results

Table 14. Computational Results Under 3 Hours Runtime Limit

Matheuristic

Instance fwin Best Average σ Time (s) Iteration

2.12 0.010024 0.012582 0.013073 0.000426 1,0782 5,514
2.13 0.028875 0.033883 0.035785 0.001315 5,078 26,278
2.14 0.034971 0.041784 0.043862 0.001953 9,918 10,036
2.15 0.024993 0.031674 0.034354 0.001731 6,119 18,530
2.16 0.011783 0.016852 0.017084 0.000193 9,612 9,441
2.17 0.032130 0.043120 0.044007 0.000756 7,731 5,779
2.18 0.031882 0.042272 0.043314 0.000983 9,330 5,864
2.19 0.034022 0.041906 0.044288 0.001907 7,509 9,515
2.20 0.017486 0.018517 0.019157 0.000486 10,512 3,988
2.21 0.016806 0.018640 0.019110 0.000351 10,569 3,794
2.22 0.012667 0.015004 0.015733 0.000642 10,782 3,562
2.23 0.012603 0.014206 0.014953 0.000470 10,261 3,238
2.24 0.011219 0.013212 0.013676 0.000291 10,779 23,100
2.25 0.011451 0.013851 0.014068 0.000163 8,695 11,273
2.26 0.011281 0.013551 0.013832 0.000175 10,099 11,191
2.27 0.010042 0.012415 0.013025 0.000376 8,727 5,665
2.28 0.011799 0.015979 0.016940 0.000731 9,385 9,035
2.29 0.030760 0.040114 0.042603 0.001858 10,063 5,551
2.30 0.012633 0.014895 0.015603 0.000559 10,301 3,417
2.31 0.012965 0.013838 0.014834 0.000760 10,762 3,425

Notes. Column fwin gives the best objective values obtained in the finals of the ROADEF/EURO
Challenge 2016 across all the competing teams. Columns Best and Average, respectively, present
the best and the average objective values obtained by the matheuristic algorithm. Column σ gives the
standard deviation over multiple runs, while columns Time and Iteration, respectively, report the
average computing time and the number of iterations required to obtain the best solutions with our
matheuristic algorithm. Note that the reported time is less than the maximum time limit if the best
solution is reached before the maximum time limit has elapsed.
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reported in the challenge. Furthermore, the proposed
algorithm exhibits a stable performance with a standard
deviation σ that is less than 0.002 for all the instances.
Note that the normalized score of this updated al-
gorithm based on the challenge rule is 5.10 versus
6.62 in the finals of the challenge. One observes that
the gap between the initial solution obtained by the
constructive heuristic and the best final solution is
over 50% for all the instances. Notice that this gap is
greater than 100% on 9 instances, implying that the
proposed matheuristic is essential for improving the
solution quality. For some instances—for example,
2.23, 2.29, and 2.30—the generation of the initial so-
lution takes thousands of attempts and hundreds of
seconds, due to multiple failures in finding a feasible
solution. This suggests that there is still room for im-
provement by means of an improved algorithm for so-
lution initialization, which could generate better starting
points and save time for the optimization phase.

When the runtime limit is relaxed to 3 hours (10,800
seconds), Table 14 discloses better average logistic
ratios for all the instances and further improvement of
the best results for 18 out of the 20 instances, which
highlights the search potential of our algorithm. The
normalized score under this relaxed runtime condi-
tion goes down to 3.90. Despite the solution quality
being improved, the best solutions are found after
10,000 seconds in half of the cases, which means that
the optimization procedure did not converge within
the extended runtime limit. One possible way to im-
prove efficiency is to accelerate its components, in-
cluding timing optimization and quantity decision, by
means of faster exact/greedy algorithms to solve the
subproblems or with parallel neighborhood evalua-
tion techniques.

The executable code of our algorithm and the best
solutions found so far by our solver are available at

https://github.com/HUST-Smart/ROADEF2016-IRP
-Results for future comparisons.

6.4. Importance of Different Neighborhood Structures
In our matheuristic algorithm, we propose six neigh-
borhood structures to adjust routes with the multi-
neighborhood search procedure, including adding an
operation (11), removing an operation (12), replacing
an operation (13), swapping two operations within
a shift (14), moving an operation from one shift to
another (15), and adding a shift (16). To ensure that
these neighborhoods play a meaningful role, we con-
duct experiments to analyze the performance of the
matheuristic algorithm in different cases. For each
neighborhood, we test a less general version of our
algorithm that excludes a given neighborhood and
compare the average results with those obtained
by the full version of the algorithm. For this purpose,
we first perform 30 independent runs per instance
for each version that excludes a specific neighbor-
hood and for the complete algorithm and then cal-
culate the average objective gap between the solu-
tions obtained by the considered version and the
complete algorithm. The resulting gaps for each ver-
sion (labeled as N1, N2, N3, N4, N5, and N6) and for
each instance are plotted in Figure 3. Positive gaps
imply a deteriorating performance with respect to
the original algorithm, whereas negative gaps im-
ply an improved performance with respect to the com-
plete version.
From Figure 3, we observe that the combined use of

all six neighborhoods exhibits the best performance
in general. Specifically, the complete algorithm re-
ports better results for all the instances compared with
the algorithms that exclude N2 or N5, for 18 instances
compared with the algorithms that exclude N3 or N4,
for 14 instances compared with the algorithm that

Figure 3. (Color online) Gaps Between the Average Objectives Obtained with the Full Version and the Versions Without Each
Given Neighborhood
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excludes N6, and for 13 instances compared with the
algorithm that excludesN1. For those instances where
the complete version is outperformed, there is no

obvious benefit to exclude the related neighborhood.
This experiment justifies the effectiveness of the pro-
posed neighborhoods.

Figure 4. (Color online) Effectiveness of the Adaptive Neighborhood Selection Strategy
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6.5. Effectiveness of the Adaptive Neighborhood
Selection Strategy

As indicated above, we adopt an adaptive neighborhood
selection strategy where a neighborhood is selected
based on a probability that is adaptively adjusted to
reflect historical performance. To determine whether
this adaptive probability adjustment plays a mean-
ingful role, we implement another selection strategy
that gives each neighborhood an equal chance of be-
ing selected and compare the performance of these
two versions. Figure 4 shows the outcome of executing
30 independent runs for each problem instance and
for each selection strategy in a box-and-whisker plot.

This figure demonstrates that the adaptive selec-
tion strategy is clearly superior to the equal proba-
bility version. The adaptive selection strategy obtains
better overall results for 15 out of the 20 instances,
while obtaining slightly worse or comparable results
for the remaining 5 instances (2.15, 2.17, 2.18, 2.24,
and 2.29). For 9 problem instances, the worst result
of the adaptive selection strategy is better than the

best result of the equal-chance selection strategy (2.16,
2.19, 2.20, 2.21, 2,22, 2.25, 2.26, 2.30, and 2.31), which
highlights the effectiveness of the adaptive neigh-
borhood selection strategy.

6.6. Significance of Neighborhood Estimation
To enhance the search efficiency, we adopt a neigh-
borhood estimation based on the correlation between
the incremental value of the total cost and the ob-
jective caused by the neighborhood move. We in-
vestigate the merit of this acceleration strategy by
examining its performance on four typical instances
(2.16, 2.18, 2.20, and 2.26). Note that similar results
can be observed on other instances. For each neighbor-
hood move considered by the local search procedure,
we record the relation between its total cost and its
objective value to observe if these values are correlated.
Figure 5 presents the distributions of these two

values for all neighborhood solutions generated by
the local search procedure and discloses that when
the objective improves (i.e., the incremental value of

Figure 5. (Color online) Correlation Between the Incremental Value of the Total Cost and the Objective
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the objective is negative), the incremental value of the
total cost is usually negative too. In other words, a
better neighboring solution usually corresponds to
an improved total cost. This phenomenon suggests
that we should focus on the neighborhood moves
with a good incremental value of the total cost instead
of the logistic ratio. Thus, we can estimate the quality
of the neighborhood moves by considering the total
cost alone.

To further demonstrate this fact, at each iteration of
the local search, we sort the neighborhood moves in
an increasing order of their incremental values of
the total cost and record the ranking of elite moves,
considering the three best moves in the neighbor-
hood. Figure 6 shows the statistical results of this
experiment. A point on the curve such as (7, 0.7)
means that the ranking of 70% of the elite moves at
each iteration is less than 7.

Figure 6 shows that at least 70% of the elite moves
are contained among those with a ranking of at most
10. As described above, the incremental value of the
total cost incurred by a neighborhood move is fixed
after the route is adjusted and the timing optimiza-
tion model is solved. Once these two procedures are
performed for all neighborhood moves, they are sorted
by the incremental value of the total cost in an in-
creasing order. Then, we can identify 70% of the elite
moves by examining only the first 10 moves in the
order at each iteration. According to this analysis, at
each iteration of the local search, we divide the or-
dered neighborhood moves, or neighboring solu-
tions, into several segments of equal size. If a single
segment contains all the moves, it is equivalent to the
classical local search based on the best improvement
strategy. If there is only one move in each segment, it
reduces to the well-known local search based on the

Figure 6. (Color online) Statistical Results of the Ranking of the Elite Neighborhood Moves
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first improvement strategy. To make a balance be-
tween these two policies, we define a parameter φ
(segment size) in order to control the trade-off be-
tween intensification and diversification, as shown
in Table 11. Finally, at each iteration, we solve the
quantity decision model for all the neighborhood
moves in a given segment and select the best one. The
ordered segments will be sequentially evaluated until
an improved solution is obtained or until all the seg-
ments are evaluated.

6.7. Objective for the Timing Optimization Model
As the operation quantity is not specified when
solving the timing optimization model, there is no
straightforward objective for the model. Therefore,
wemust use an implicit objective function to evaluate
the quality of different timing schedules.

As described above, we use ug+1 − u0, which rep-
resents the time span of the shift, as the objective. In
this configuration, the compact timing schedule is
preferred, which minimizes the total wasted wait-
ing time within the shift. To analyze the influence of
different settings of the objective, we test two other
objectives and compare them with the time span of
the shift. The first configuration is −u0 which prefers
a “late beginning,” where a shift is started as late as
possible. This configuration can delay the start time of
each operation and may be effective because later
delivery implies that more quantity can be delivered.
However, it also increases the risk of run-out. The
second configuration is ug+1, which prefers an “early
ending,”where a shift is finished as early as possible.
Assuming the inventory levels of customers are close
to the safety level, this objective might be helpful for
avoiding shortage.

We select two typical instances and observe how
the best objective value evolves with the search. Note
that similar results can be observed on other in-
stances. The comparison results are presented in
Figure 7, using fstart, fend, and fspan to denote the results
obtained by the configurations −u0, ug+1, and ug+1 − u0,
respectively. For each instance and each configura-
tion, we perform 30 independent runs.
Figure 7 shows that the overall performance of

fspan outperforms other two configurations. A possi-
ble reason may be that ug+1 −u0 provides a measure
that identifies a better balance between −u0 and ug+1,
thereby enabling the model to find a timing sched-
ule that makes good use of the time resource and
does not start the shift too early or finish the shift
too late.

7. Conclusion
The integrated inventory-management and vehicle-
routing problem (denoted as IRP-Challenge2016), origi-
nally proposed for the ROADEF/EURO Challenge 2016,
aims to minimize the unit distribution cost while
guaranteeing the quality of service to each customer.
In this paper, we have presented a matheuristic algo-
rithm for solving the IRP-Challenge2016 that inte-
grates a local search-based metaheuristic with math-
ematical programming. The matheuristic adopts a
new hierarchy of decomposition, which divides the
problem into one master problem (routes adjustment)
and two subproblems (timing optimization and quan-
tity decision). The algorithm for the master problem
uses a multineighborhood search metaheuristic to
adjust the routes. The algorithms for the timing op-
timization and the quantity decision subproblems,
respectively, introduce an MIP model and an LP model

Figure 7. Comparison Between Different Objectives for the Timing Optimization Model
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that can be exactly solved by amathematical solver such
as Gurobi.

By testing on 20 benchmark instances from the
ROADEF/EURO Challenge 2016, we have shown that
the proposed matheuristic algorithm obtains outcomes
comparable to the best results in the competition. Al-
though our matheuristic algorithm obtained third place
in the challenge, we show that there is still room for
improvement, which may narrow the gap to the win-
ner’s algorithm. We anticipate that the exploitation of
more complex neighborhoods and more advanced
problem-specific heuristics will bring further bene-
fits. The algorithm may also be improved by making
use of information gathered from preprocessing, such
as partitioning the nodes by location or consumption
rate to obtain balanced clusters of customers, as in
Cao and Glover (2010). The success of the matheur-
istic algorithm and the decomposition scheme on the
IRP-Challenge2016 reaffirms the value of employing
different strategies, establishing a balance between
intensification and diversification, and incorporating
problem-specific knowledge in designing algorithms
for complex problems.
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phase variable neighborhood search for the multi-product in-
ventory routing problem. Comput. Oper. Res. 52(Part B):291–299.

MoinNH, Salhi S, AzizN (2011) An efficient hybrid genetic algorithm
for the multi-product multi-period inventory routing problem.
Internat. J. Production Econom. 133(1):334–343.

Park YB, Yoo JS, Park HS (2016) A genetic algorithm for the vendor-
managed inventory routing problem with lost sales. Expert
Systems Appl. 53:149–159.

Qin L, Miao L, Ruan Q, Zhang Y (2014) A local search method for
periodic inventory routing problem. Expert Systems Appl. 41(2):
765–778.

Ramalhinho-Lourenço H, Ribeiro R (2003) Inventory-routing model,
for a multi-period problem with stochastic and deterministic
demand. Technical report, Department of Economics and Busi-
ness, Universitat Pompeu Fabra, Barcelona.

Solyali O, Süral H (2011) A branch-and-cut algorithm using a strong
formulation and an a priori tour-based heuristic for an inventory-
routing problem. Transportation Sci. 45(3):335–345.

Van Anholt RG, Coelho LC, Laporte G, Vis IF (2016) An inventory-
routing problem with pickups and deliveries arising in the re-
plenishment of automated teller machines. Transportation Sci.
50(3):1077–1091.

WangZ, LüZ, YeT (2016)Multi-neighborhood local search optimization
for machine reassignment problem. Comput. Oper. Res. 68:16–29.

ZhaoQH, Chen S, ZangCX (2008)Model and algorithm for inventory/
routing decision in a three-echelon logistics system. Eur. J. Oper.
Res. 191(3):623–635.

Zhao QH, Wang SY, Lai KK (2007) A partition approach to the
inventory/routing problem. Eur. J. Oper. Res. 177(2):786–802.

Su et al.: Matheuristic for IRP in ROADEF/EURO Challenge
Transportation Science, Articles in Advance, pp. 1–25, © 2020 INFORMS 25


	A Matheuristic Algorithm for the Inventory Routing Problem
	Introduction
	Problem Description
	Related Works
	Mathematical Formulation
	Solution Method
	Computational Results and Analysis
	Conclusion


